PreLab 5 – Audio Speaker Driver

• GOAL

The goal of Lab 4 is to demonstrate a two audio amplifier. In PreLab 4 you will investigate a emitter followers and Darlington pair transistors.

• DARLINGTON FOLLOWER

It is a bad idea to connect an audio speaker to a common emitter amplifier, because the speaker impedance (e.g. 16 ohm) is MUCH lower than the common emitter's output impedance (> 1 kohm). You will get almost no output at all! B

An emitter follower obviously helps, but we need extra large β to deal with the very low speaker impedance. Darlington to the rescue! Using TWO transistors in series provides a total current gain of about 10,000. Nice! \bigcirc

Fig. 1: Darlington follower acts as a voltage buffer between the signal source and low impedance load.

- TASK 1: Enter the circuit schematic for the Darlington follower shown in Fig. 1 in Multisim.
 - The Darlington connection is made with the 2N3904 and TIP31C transistors.
 - VS is an AC voltage source (sine wave, 1 Vpeak, 1 kHz).
 - The 12 kohm resistor is intended to mimic the output impedance of the Lab 3 common emitter.
 - We'll model the speaker as a 16 ohm resistor (this is not a good model, but is OK for now).
 - Properly label the net names for V_IN, V_B, V_E, and V_OUT.

- TASK 2: Perform a DC Operating Point Analysis:
 - Fill out Table 1 with your simulated values for 0 V_B and V_E.
 - Calculate (e.g. by hand) the theoretical values for 0 V_B and V_E.
 - Is the voltage divider stiff? If not, use KVL to determine V_B.
 - Assume V BE= 0.7V and beta = 100 for both transistors. Show all work!

Simulation		Theory		
V_B	V_E	V_B	V_E	

- **TASK 3**: Perform a Transient Analysis:
 - Use simulation start and stop times of TSTART = 0 and TSTOP = 2 ms, respectively. 0
 - Submit a plot showing both V_IN and V_OUT together. 0
 - Measure the peak-to-peak values for V_IN and V_OUT and compute the resulting amplifier gain. 0
 - Compute the theoretical voltage gain using A = $r_e / (r_e' + r_e)$. Assume $\beta = 100$ and $V_{BE} = 0.7$ for both 0 transistors. Show all work.
 - Compute the theoretical input and output impedance (e.g. using formulas from lecture). 0
 - Complete Table 2 with your measured and theoretical values. 0

Table II: Transient Analysis

V_IN (pp, sim)	V_OUT (pp, sim)	Gain (sim)	Gain (theory)	Z_IN (theory)	Z_OUT (theory)

- **TASK 4**: OK! Now it's time to analyze your simulation results to see if they make sense! Answer the following:
 - A good voltage buffer should have $V_{OUT}/V_{IN} > 0.9$. Is this the case for the simulated Darlington follower? 0
 - The output impedance Z_{OUT} of a buffer should be at least 10 times smaller than the load R_L . Does your 0 theoretical Z_{OUT} satisfy this criterion?

Make sure you submit the following: \geq

- Circuit schematic and plot showing V_IN and V_OUT together. 0
- Completed Table 1 and 2. Include all work for theoretical calculations. 0
- Answers to the TASK 3 questions. Ο

(End of PreLab 4)